Rings in which certain subsets satisfy polynomial identities

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Derandomizing Tests for Certain Polynomial Identities

We extract a paradigm for derandomizing tests for polynomial identities from the recent AKS primality testing algorithm. We then discuss its possible application to other tests.

متن کامل

On Identities with Additive Mappings in Rings

begin{abstract} If $F,D:Rto R$ are additive mappings which satisfy $F(x^{n}y^{n})=x^nF(y^{n})+y^nD(x^{n})$ for all $x,yin R$. Then, $F$ is a generalized left derivation with associated Jordan left derivation $D$ on $R$. Similar type of result has been done for the other identity forcing to generalized derivation and at last an example has given in support of the theorems. end{abstract}

متن کامل

A Note on Rings with Certain Variable Identities

It is proved that certain rings satisfying generalized-commutator constraints of the form [x n n n y y y 0 with m and n depending on x and y, mst have nll commutator ideal. KEY WDRDS AND PHRASES. Commutator ideal, periodic ring. 1980 AMS SUBJECT CLASSIFICATION CODE. 16A70.

متن کامل

Some Polynomial Identities that Imply Commutativity of Rings

In this paper, we establish some commutativity theorems for certain rings with polynomial constraints as follows: Let R be an associative ring, and for all x, y ∈ R, and fixed non-negative integers m > 1, n ≥ 0, r > 0, s ≥ 0, t ≥ 0, p ≥ 0, q ≥ 0 such that P (x, y) = ±Q(x, y), where P (x, y) = ys[x, y]yt and Q(x, y) = xp[xm, yn]ryq. First,it is shown that a semiprime ring R is commutative if and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1966

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1966-0217120-1